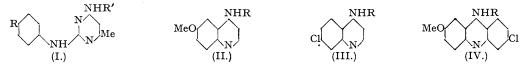
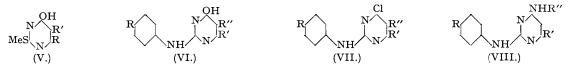
74. Synthetic Antimalarials. Part VII. 2-Arylamino-4-dialkylaminoalkylaminopyrimidines. Variation of Substituents in the 5- and the 6-Position.

By F. H. S. CURD, (MISS) D. N. RICHARDSON, and F. L. ROSE.

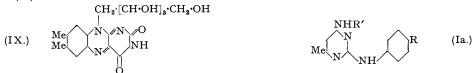

The studies of 2-arylamino-4-aminoalkylamino-6-methylpyrimidines as antimalarials (Curd and Rose, this vol., p. 343; Curd, Davis, and Rose, *ibid.*, p. 351) have been extended to compounds having (a) no substituent in the 6-position, (b) a 6-phenyl group, and (c) various substituents in the 5-position (with and without a 6-methyl group).

The formal similarity of compounds of type (I) to riboflavin (see previous papers) has been further explored and an attempt has been made to increase their activity by the synthesis of structures capable not only of riboflavin antagonism but also possibly of interference with nucleoside synthesis on the basis of the hypothesis (Part III, Hull, Lovell, Openshaw, Payman, and Todd, this vol., p. 357) that pyrimidine derivatives bearing a substituent in position 5 and an aminoalkylamino group in position 4 might be capable of functioning in this way.


In our initial study of 2-arylamino-4-dialkylamino-alkylamino-6-methylpyrimidines (I; R = Cl, OMe, $R' = NH \cdot alkylene \cdot N(alkyl)_2$ as antimalarials (Part I, this vol., p. 343) and the later more detailed examination of the effect of different substituents in the arylamino group and of variations in the dialkylaminoalkylamino residue (Part II, this vol., p. 351; Part V, *ibid.*, p. 366) the 6-methyl group was invariably present. The

original reason for this was that such compounds were more accessible than those unsubstituted in the 6-position, and not because the 6-methyl group was thought to have any chemotherapeutic significance.

It has been suggested (Part V, *loc. cit.*) that quinoline derivatives of types (II and III; R = dialkylamino $alkyl) may, because of their relationship to mepacrine (IV; <math>R = CHMe \cdot [CH_2]_3 \cdot NEt_2$), act in a similar manner to this drug and therefore to the compounds of type (I), by interference with a riboflavin-containing enzyme important for the survival of the malaria parasite. The introduction of a methyl group into the 2-position of compounds of type (II) appears to have a dystherapeutic effect (Magidson and Rubtsov, *J. Gen. Chem. Russ.*, 1937, 7, 1896; Krichevski *et al.*, *J. Microbiol. Epidemiol. and Immunobiol. U.S.S.R.*, 1935, 14, 642). According to D.R.P. 683,692 the same is true of compounds of type (III), and by analogy it seemed possible that removal



of the 6-methyl group in type (I) might lead to increased antimalarial activity. In order to investigate this point we prepared 2-p-chloroanilino-4- β -diethylaminoethylaminopyrimidine (VIII; R = Cl, R' = H, R'' = [CH₂]₂·NEt₂) and the corresponding diethylaminopropylamino derivative (VIII; R = Cl, R' = H, R'' = [CH₂]₃·NEt₂) by condensing p-chloroaniline with 4-hydroxy-2-methylthiopyrimidine (V; R = R' = H) (Wheeler and Merriam, Amer. Chem. J., 1903, 29, 478) to give 2-p-chloroanilino-4-hydroxypyrimidine (VI; R = Cl, R' = Cl, R' = R'' = H) followed by conversion, with phosphoryl chloride, into the chloropyrimidine (VII; R = Cl, R' = R' = Cl, R' = R'' = H) and condensation of this with β -diethylaminoethylaminoethylaminopropylamine respectively. The antimalarial activity of these compounds was much lower than that of the corresponding 6-methyl derivatives. Similar low antimalarial activity was found with 2-p-toluidino-4- β -diethylaminoethy

The importance of the 6-methyl group in (I; R = Cl, R' = dialkylaminoalkyl) having been demonstrated we were led to examine the effect of replacing the 6-methyl group by a variety of other groups. This will be dealt with more fully in a later communication, but we record here the synthesis of 2-p-chloroanilino-4- β diethylaminoethylamino-6-phenylpyrimidine (VIII; $R = Cl, R' = Ph, R'' = [CH_2]_2 \cdot NEt_2$) from 4-hydroxy-2methylthio-6-phenylpyrimidine (V; R = Ph, R' = H) via (VI; R = Cl, R' = Ph, R'' = H) and the chloropyrimidine (VII; R = Cl, R' = Ph, R'' = H). The product was practically devoid of antimalarial activity.

Previously, in considering the formal resemblance of compounds of type (I) to riboflavin (IX), it has been supposed that the pyrimidine ring of (I) corresponds to the same ring of the vitamin, but it seemed possible that the observed antagonism between (I; $R = Cl, R' = [CH_2]_2 \cdot NEt_2$) and (IX) (Madinaveitia, *Biochem. J.*, in the press) might be accounted for by a correspondence of the pyrimidine ring of the former to the benzene ring of riboflavin thus correlating the 6-methyl group of (I) to the 6-methyl group of the vitamin. This is illustrated in (Ia).

On this basis the introduction of an additional methyl group into the 5-position of the pyrimidine ring of (I) to correspond to the 7-methyl group of riboflavin appeared to be of interest, but there were other reasons for a detailed study of the effect of introducing additional substituents into this position in (I).

An investigation of alkylpyrimidines carrying aminoalkylamino groups uncomplicated by anilino groups, carried out at Manchester University under Professor Todd and reported in Part III (this vol., p. 357), led to the discovery that 2-amino-4-aminoalkylamino-6-methylpyrimidines of type (X), corresponding to the anilino derivatives of type (I), were without antimalarial activity at tolerated doses, but that the introduction of alkyl substituents into the 5-position of the pyrimidine ring to give (XI; R = dialkylaminoalkyl, R' = alkyl) restored activity.

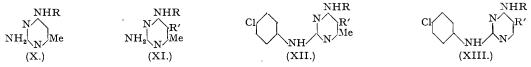
This dissimilarity between compounds of type (X) and type (I) and the fact that no antagonism could be demonstrated between (XI; $R = CHMe \cdot [CH_{2]_3} \cdot NEt_2$, R' = Me) and riboflavin using *Lactobacillus casei* suggested a mode of action for compounds of type (XI) different from that which is responsible for the activity of compounds of type (I), and the speculative hypothesis was advanced that compounds of the former type might be capable of interference with either the synthesis or the function of purine nucleosides, particularly those, such as adenosine, which are widely occurring coenzyme constituents.

380

If this hypothesis is correct then it seemed possible that the introduction of a substituent into the 5-position of the pyrimidine ring of compounds of type (I) might cause a potentiation of activity. Such compounds

TABLE I.

Antimalarial Activities.


The antimalarial activities were estimated using chicks infected with *P. gallinaceum*. For the significance of the symbols used to express activity reference should be made to Part I.

	symbols used to express activity reference should be made to Par	t 1.	
Ref. No. 3780	Substance. 2-p-Chloroanilino-4-γ-diethylaminopropylaminopyrimidine	Dose, mg./kg. 160 80	Activity. +
3839	2 - p -Chloroanilino- 4 - β -diethylaminoethylaminopyrimidine	160	+ to ++
3834	2 - p -Toluidino-4- β -diethylaminoethylaminopyrimidine	80 120 80	- +
4145	2 - p -Chloroanilino- 4 - β -diethylaminoethylamino- 6 -phenylpyrimidine	160	± ±
3687	$2\-p\-Chloroanilino\-4\-\gamma\-diethylaminopropylamino\-5:6\-dimethylpyrimidine$	80 160 80	 + + + +
3903	2 - p -Chloroanilino-4- β -diethylaminoethylamino-5 : 6-dimethylpyrimidine	$\begin{array}{c} 40\\ 40\\ 20 \end{array}$	+ to $+$ $+$
4410	$2\-p\-chloroanilino\-4\-\gamma\-dimethylaminopropylamino\-5:6\-dimethylpyrimidine$	40	++
4065	$2\-p\-Chloroanilino\-4\-\beta\-die \+hylamino\-6\-methyl-5\-ethylpyrimidine$	20 120 80	+ to $+++$
4119	$2-p\text{-}Ch loroanilino-4-\beta\text{-}dimethy laminoethy lamino-6-methyl-5-ethyl pyrimidinoethyl lamino-6-methyl by laminoethyl pyrimidinoethyl by laminoethyl by l$	40 e 80 40	± + -
4120	$2\-p\-Chloroanilino\-4\-\gamma\-diethylaminopropylamino\-6\-methyl-5\-ethylpyrimidine$		+
4118	2-p-Chloroanilino-4-γ-dimethylaminopropylamino-6-methyl-5-ethyl- pyrimidine	80 40	 + +
4396	$2-\dot{p}$ -Chloroanilino-4- δ -diethylamino- a -methylbutylamino-6-methyl-5-ethylpyrimidine	160 120 80	+ + -
4209	2-p-Chloroanilino-4-β-diethylaminoethylamino-5-benzyl-6-methyl-	160	+ to + +
4231	pyrimidine 2- <i>p</i> -Chloroanilino-4-γ-diethylaminopropylamino-5-benzyl-6-methyl- pyrimidine	$\begin{array}{c} 40\\ 160\\ 80 \end{array}$	+ to $++$
4288	2-p-Chloroanilino-4-γ-dimethylaminopropylamino-5-benzyl-6-methyl- pyrimidine	160	+
4253	2-p-Chloroanilino-4-8-diethylamino-a-methylbutylamino-5-benzyl-6-methyl- pyrimidine	80 160 80	± - +
3563	5-Bromo-2-ρ-chloroanilino-4-γ-diethylaminopropylamino-6-methyl- pyrimidine	400 80	+
4 3 43	$2-\dot{p}$ -Chloroanilino- $4-\beta$ -diethylaminoethylamino-5 : 6 -cyclohexenopyrimidine	200 120 80	- ++ + +
4356	$2-p$ -Chloroanilino- $4-\gamma$ -diethylaminopropylamino- $5:6$ -cyclohexeno-	40 80	+ to ++
4355	pyrimidine 2-p-Chloroanilino-4-γ-dimethylaminopropylamino-5 : 6- <i>cyclo</i> hexeno- pyrimidine	40 80 40 20	+ ++ ++
4557	2-p-Chloroanilino-4-y-dimethylaminopropylamino-5: 6-cyclopenteno-	10 80	+ to ++ + to ++
3815	pyrimidine 2-φ-Chloroanilino-4-β-diethylaminoethylamino-5-methylpyrimidine	40 80	
4146	2-p-Chloroanilino-4-β-diethylaminoethylamino-5-phenylpyrimidine	$\begin{array}{c} 40 \\ 160 \end{array}$	 ±
4208	2 - p -Chloroanilino- 4 - γ -diethylaminopropylamino-5-phenylpyrimidine	80 80	
4064	2 - p -Anisidino- 4 - β -diethylaminoethylamino- 5 -phenylpyrimidine	40 160	
4260	2 - p -Chloroanilino- 4 - β -diethylaminoethylamino- 5 -phenoxypyrimidine	80 160 80	± ±
2666	2 - p -Chloroanilino- 4 - β -diethylaminoethylamino- 6 -methylpyrimidine	40 80	++
3711	$2\-p\-Chloroanilino\-4\-\gamma\-dimethylaminopropylamino\-6\-methylpyrimidine$	40 40 20	+ + + +

should still retain the property of acting as riboflavin antagonists and if they were capable also of purine nucleoside antagonism they might be expected to possess a greater activity against an enzyme system of which riboflavin-adenosine-dinucleotide is a constituent than a compound capable only of interference with either the

riboflavin or the adenosine portion. It also appeared possible that a compound of type (XII) might have a wider range of antagonistic activity and be capable of interference not only with riboflavin-containing enzymes but also with other enzyme systems having a purine nucleoside as a coenzyme constituent.

A series of compounds of type (XII) has therefore been prepared, and the following have been introduced as substituents into the 5-position: methyl, ethyl, benzyl, bromine. Disubstitution in the 5- and the 6-position has also taken the form of an additional 5- or 6-membered cyclopenteno- or cyclohexeno-ring. In nearly every case more than one dialkylaminoalkyl group has been tried. The compounds prepared are listed in Table I, which gives an indication of the antimalarial activities. For comparison the activities of two compounds of type (I) are included. Full biological details will be published and discussed in detail elsewhere, but no compound of type (XII) has shown a significantly greater activity than the corresponding compound of type (I) without the 5-substituent.

It then occurred to us that an investigation of compounds of type (XIII; R' = alkyl) might give some information on the mode of action of type (XII). It has been mentioned above that compounds of type (VIII; R' = H) are much less active than those of type (VIII; R' = Me). If then the introduction of a substituent into position 5 of (VIII; R = H) to give (XIII) conferred on these compounds the power to act in the same manner as those of type (XI) it might be anticipated that in type (XIII; R' = alkyl) the activity might be largely restored as compared with (VIII; R = H). 2-p-Chloroanilino-4- β -diethylaminoethylamino-5methylpyrimidine (XIII; $R = [CH_2]_2 \cdot NEt_2$, R' = Me) was therefore prepared but had no activity. Low activity was also characteristic of several other compounds of this type, but with different substituents in the 5-position, which were prepared: 2-p-chloroanilino-4- β -diethylamino-thylamino-5-phenylpyrimidine (XIII; $R = [CH_2]_2$, NEt_2 , R' = Ph), the corresponding p-anisidino-derivative, 2-p-chloroanilino-4- γ -diethylaminopropylamino-5-phenylpyrimidine (XIII; $\mathbf{R} = [CH_2]_3 \cdot NEt_2$, $\mathbf{R}' = Ph$), and 2-p-chloroanilino-4- β -diethylamino-ethylamino-5-phenoxypyrimidine (XIII; $\mathbf{R} = [CH_2]_2 \cdot NEt_2$, $\mathbf{R}' = OPh$).

Compounds of types (XII) and (XIII) were made by the now well established method from a 4-hydroxy-2alkylthiopyrimidine (V) appropriately substituted in the 5- and 6-positions through the intermediate stages (VI) and (VII). The majority of the 4-hydroxy-2-alkylthiopyrimidines of type (V) used were known compounds but a few are described now for the first time. 5-Bromo-4-hydroxy-2-methylthio-6-methylpyrimidine was prepared by bromination of 4-hydroxy-2-methylthio-6-methylpyrimidine in acetic acid. 4-Hydroxy-2-methylthio-5: 6-cyclopentenopyrimidine and 4-hydroxy-2-methylthio-5: 6-cyclopexenopyrimidine were prepared by condensation of ethyl cyclopentanone-2-carboxylate and ethyl cyclohexanone-2-carboxylate respectively with S-methylisothiourea in an aqueous medium. The yields were low owing to side reactions the products of which were not investigated, but in the latter case the yield was considerably improved by condensing the ethyl cyclohexanone-2-carboxylate with thiourea and methylating the resulting 4-hydroxy-2-thiol 5:6-cyclohexenopyrimidine with methyl sulphate and alkali.

EXPERIMENTAL.

2-p-Chloroanilino-4-hydroxypyrimidine (VI; R = Cl, R' = R'' = H).—4-Hydroxy-2-methylthiopyrimidine (Wheeler and Merriam, loc. cit.) (18 g.), p-chloroaniline (32 g.), and β -ethoxyethanol (50 c.c.) were refluxed with stirring for 26 hours. The solid material which separated was filtered off after cooling, washed with hot alcohol (100 c.c.), and dried (yield,

The solid material which separated was filtered off after cooling, washed with hot alcohol (100 c.c.), and dried (yield, 21.5 g.). Crystallisation from acetic acid gave 2-p-chloroanilino-4-hydroxypyrimidine as thin colourless prisms, m. p. 242—244° (Found : N, 19.0. C₁₀H₈ON₃Cl requires N, 19.0%). 4-Chloro-2-p-chloroanilinopyrimidine (VII; R = Cl, R' = R'' = H).—2-p-Chloroanilino-4-hydroxypyrimidine (21.5 g.) and phosphoryl chloride (55 c.c.) were refluxed for 15 minutes. The excess of phosphoryl chloride was removed under reduced pressure and the solid residue added to ice. The resulting suspension was made alkaline with ammonia and, after stirring for 1 hour, the crude product was collected and washed with water. It crystallised from alcohol in clusters of colourless prisms, m. p. 124° (yield, 16.0 g.) (Found : C, 50.2; H, 2.6; N, 17.0; Cl, 29.4. C₁₀H₇N₃Cl₂ requires C, 50.0; H, 2.9; N, 17.5; Cl, 29.6%). 2-p-Chloroanilino-4-hydroxy-6-phenylpyrimidine (VI; R = Cl, R' = Ph, R'' = H).—4-Hydroxy-2-methylthio-6-phenylpyrimidine (Wheeler and Merriam, *loc. cit.*) (8.2 g.) and p-chloroaniline (12 g.) were stirred and heated at 130—140°

phenylpyrimidine (Wheeler and Merriam, *loc. cit.*) (8.2 g.) and p-chloroaniline (12 g.) were stirred and heated at $130-140^{\circ}$ The cooled melt was ground and then refluxed with alcohol (75 c.c.) for 11 hours. The product was filtered for 6 hours. (9·3 g.) and phosphoryl chloride (30 c.c.) were refluxed for 1^{1/2} hours. After removing the excess of phosphoryl chloride

under reduced pressure the residue was added to crushed ice and made alkaline with ammonia. After standing for 1 hour the crude product was filtered off, washed with water, and crystallised from alcohol, giving 4-chloro-2-p-chloroanilino-6-phenylpyrimidine as colourless prisms, m. p. 166—168° (yield, 6·1 g.) (Found : N, 13·5; Cl, 22·3. C₁₆H₁₁N₃Cl₂ requires N, 13·3; Cl, 22·5%).

2-p-Chloroanilino-4-hydroxy-5: 6-dimethylpyrimidine (VI; R = Cl, R' = R'' = Me).—4-Hydroxy-2-ethylthio-5: 6dimethylpyrimidine (Wheeler and Merriam, *loc. cit.*) (15 g.) and *p*-chloroaniline (26 g.) were heated at 130–140° for 9 hours with stirring. The cooled and ground reaction mixture was refluxed with alcohol (150 c.c.) for 1 hour and filtered, and the undissolved residue washed with alcohol and dried (yield, 20.85 g.). When purified by crystallisation from aqueous acetic acid the *compound* had m. p. 270–272° (Found : C, 57.8; H, 5.2; N, 16.5. $C_{12}H_{12}ON_3Cl$ requires C, 57.7; H, 4.8; N, 16.9%).

вв

4-Chloro-2-p-chloroanilino-5: 6-dimethylpyrimidine (VII; R = Cl, R' = R'' = Me).—2-p-Chloroanilino-4-hydroxy-5 : 6-dimethylpyrimidine (20 g.) and phosphoryl chloride (60 c.c.) were refluxed for $1\frac{1}{2}$ hours and the reaction mixture worked up as in the case of previous chloropyrimidines. Purified by crystallisation from alcohol the *product* formed colourless prisms, m. p. 161—162° (yield, 11·4 g.) (Found: C, 53·2; H, 4·1; N, 15·5. C₁₂H₁₁N₃Cl₂ requires C, 53·7; H, 4·1; N, 15·7%).
2-p-Chloroanilino-4-hydroxy-6-methyl-5-ethylpyrimidine (VI; R = Cl, R' = Me, R" = Et).—Prepared from 4-hydroxy-2-methylthio-6-methyl-5-ethylpyrimidine (*idem, ibid.*) (18·4 g.) and p-chloroaniline (32 g.) exactly as described for the curve of polynomial formed column (VI).

hydroxy-2-methylthio-6-methyl-5-ethylpyrimidine (*idem*, *ibid.*) (18.4 g.) and *p*-chloroaniline (32 g.) exactly as described above for the corresponding 5-methyl compound, the *compound* formed clusters of colourless needles from β-ethoxyethanol, m. p. 246—247° (Found : C, 59·1; H, 5·3; N, 15·9, C₁₃H₁₄ON₃Cl requires C, 59·2; H, 5·3; N, 15·9%) (yield, 24·95 g.). 4-Chloro-2-p-chloroanilino-6-methyl-5-ethylpyrimidine (VII; R = Cl, R' = Me, R'' = Et).—2-*p*-Chloroanilino-4-hydroxy-6-methyl-5-ethylpyrimidine (13·05 g.) and phosphoryl chloride (40 c.c.) were refluxed for 1¼ hours and the reaction mixture worked up in the usual way. The chloropyrimidine crystallised from alcohol as stout colourless needles, m. p. 128—130° (yield, 11·4 g.) (Found : N, 14·9; Cl, 25·3. C₁₃H₁₃N₃Cl₂ requires N, 14·9; Cl, 25·2%). 2-p-Chloroanilino-4-hydroxy-5-benzyl-6-methylpyrimidine (VI ; R = Cl, R' = Me, R'' = CH₂Ph).—4-Hydroxy-2-ethylthio-5-benzyl-6-methylpyrimidine (Wheeler and McFarland, Amer. Chem. J., 1909, **42**, 101) (13·08 g.) and *p*-chloro-aniline (17·5 g.) heated at 130—140° for 6 hours and worked up as described above for this type of compound gave the *budroxybryimidine* (15·55 g.) which crystallised from 8-cethoxyethanol as colourless needles m. p. 258—260° (Found

anline (17.5 g.) heated at 130—140° for 6 hours and worked up as described above for this type of compound gave the hydroxypyrimidine (yield, 15.55 g.) which crystallised from β-ethoxyethanol as colourless needles, m. p. 258—260° (Found : C, 65.8; H, 4.9; N, 12.9. C₁₈H₁₆ON₃Cl requires C, 66.4; H, 4.9; N, 12.9%).
4-Chloro-2-p-chloroanilino-5-benzyl-6-methylpyrimidine (VII; R = Cl, R' = Me, R" = CH₂Ph), prepared from the above hydroxy compound (29.55 g.) and phosphoryl chloride (90 c.c.), crystallised from alcohol as colourless tables, m. p. 124—125° (yield, 25.5 g.) (Found : N, 12.3; Cl, 20.5. C₁₈H₁₅N₃Cl₂ requires N, 12.2; Cl 20.6%).
5-Bromo-4-hydroxy-2-methylthio-6-methylpyrimidine (V; R = Me, R' = Br).—4-Hydroxy-2-methylthio-6-methylpyrimidine (V; R = Me, R' = Br).—4-Hydroxy

temperature. The precipitate was confected and washed with water. It was then stirred with duite ammonia, intered off, and purified by crystallisation from β -ethoxyethanol from which the *compound* separated as colourless thick prisms, m. p. 254—256° (decomp.) (yield, 41 g.) (Found : N, 11·8; Br, 34·5. C₆H₇ON₂BrS requires N, 11·9; Br, 34·0%). 5-Bromo-2-p-chloroanilino-4-hydroxy-6-methylpyrimidine (VI; R = CI; R' = Me; R'' = Br).—5-Bromo-4-hydroxy-2-methylthio-6-methylpyrimidine (11·75 g.), p-chloroaniline (12·75 g.), and β -ethoxyethanol (25 c.c.) were stirred and heated at 120—130° for 26 hours. The product was filtered off, washed well with alcohol, and dried (yield, 11·75 g.). It crystallised from dimethylformamide-water in colourless blunt-ended needles, m. p. 267—269° (decomp.) (Found : C 420°; H 3:2; N 13:6 C H ON CIBE requires C 420°; H 2:9; N 13:49()

C, 42.5; H, 3.2; N, 13.6. $C_{11}H_9ON_3CIBr requires C, 42.0;$ H, 2.9; N, 13.4%). 4-Chloro-5-bromo-2-p-chloroanilino-6-methylpyrimidine (VII; R = Cl, R' = Me, R'' = Br).—The above hydroxy-pyrimidine (20 g.) and phosphoryl chloride (45 c.c.) were refluxed for 3 hours. Excess of phosphoryl chloride was then removed under reduced pressure and the residue added to ice with stirring. After making alkaline with ammonia, the The invest under reduced pressure and the residue added to be with stifting. After making and me with animold, the chloro compound was extracted with ether, and the extract dried and evaporated. Crystallisation of the residue from alcohol gave the *chloropyrimidine* as practically colourless prisms, m. p. 176—178° (Found : N, 12·5; 1 mg. = 1·376 mg. Ag halides. C₁₁H₈N₃Cl₂Br requires N, 12·6%; 1 mg. = 1·426 mg. Ag halides).
 4-Hydroxy-2-methylihio-5: 6-cyclohexenopyrimidine.—(a) Ethyl cyclohexanone-2-carboxylate (29 g.) was added to a solution of S-methylisothiourea sulphate (24 g.) in water (150 c.c.) containing potassium hydroxide (12 g.). The ester discussion in the description of the residue of the description of the description of the residue of the residue of the description of the residue of the

dissolved immediately and a solid was precipitated. After standing overnight this was filtered off and washed with users in the disolved in solution was precipitated. After standing overlight this was intered on and washed with water. It was then dissolved in solution hydroxide solution, and the solution treated with charcoal, filtered, and acidified with acetic acid. The dried precipitate was crystallised first from β -ethoxyethanol and then from alcohol, giving 4-hydroxy-2-methylthio-5: 6-cyclohexenopyrimidine as colourless needles, m. p. 220—222° (yield, 4.7 g.) (Found : C, 55.3; H, 5.8; N, 14.0. C₉H₁₂ON₂S requires C, 55.1; H, 6.1; N, 14.3%). (b) Thiourea (16 g.) and ethyl cyclohexanone-2-carboxylate (34 g.) were added to a solution of sodium (12 g.) in methanol (300 c.c.) and refluxed for 5½ hours. The mixture was then evaporated to dryness under reduced pressure, and the residue dissolved in water, treated with decolourising charcoal, and filtered. The filtrate was acidified with acetic acid and the precipitated product collected washed with water and dried. Crystallization from β ethowyethanol

acetic acid and the precipitated product collected, washed with water, and dried. Crystallisation from β -ethoxyethanol

acetic acid and the precipitated product collected, washed with water, and dried. Crystallisation from β-ethoxyethanol gave 4-hydroxy-2-thiol-5: 6-cyclohexenopyrimidine as colourless flat prisms, m. p. 314-320° (decomp.) (yield, 20·8 g.) (Found: C, 52·8; H, 5·2; N, 15·4. C₈H₁₀ON₂S requires C, 52·75; H, 5·5; N, 15·4%).
4-Hydroxy-2-thiol-5: 6-cyclohexenopyrimidine (18·2 g.) was dissolved in 10% potassium hydroxide solution (50 c.c.) and methyl sulphate (15 g.) added to the solution in small portions, with shaking. The precipitate was filtered off, washed with water, and dried. Crystallisation from alcohol gave 4-hydroxy-2-methylthio-5: 6-cyclohexenopyrimidine, m. p. 220-222° undepressed in admixture with material made by method (a) (yield, 11·15 g.).
2-p-Chloroanilino-4-hydroxy-5: 6-cyclohexenopyrimidine.—4-Hydroxy-2-methylthio-5: 6-cyclohexenopyrimidine (14·8 g.) and p-chloroaniline (24 g.) were heated at 130-140° for 6 hours with stirring in the initial stages. Methylthio was evolved and a homogeneous melt formed which gradually solidifed.

evolved and a homogeneous melt formed which gradually solidified. After cooling this was ground and refluxed with alcohol (200 c.c.) for $1\frac{1}{2}$ hours. The mixture was then cooled, filtered, and the residue washed with alcohol and dried (yield, 194 g). The compound separated from β -ethoxyethanol as clusters of colourless prisms, m. p. 284–287° with

(yield, 19'4 g.). The compound separated from β -etnoxyetnanol as clusters of colourless prisms, m. p. 284-287° with previous darkening (Found : C, 60.6; H, 5.0; N, 15.1; C₁₄H₁₄ON₃Cl requires C, 61.0; H, 5.1; N, 15.2%). 4-Chloro-2-p-chloroanilino-5: 6-cyclohexenopyrimidine.—The above hydroxy compound (18.4 g.) and phosphoryl chloride (56 c. c.) were refluxed for 1½ hours and the reaction mixture worked up as in the case of previous chloropyrim-idines. The product separated from alcohol as colourless plates, m. p. 137-138° (yield, 13.84 g.) (Found : N, 14.5; Cl, 24.1. C₁₄H₁₃N₃Cl₂ requires N, 14.3; Cl, 24.2%). 4-Hydroxy-2-methylthio-5: 6-cyclopentenopyrimidine.—S-Methylisothiourea sulphate (33 g.) and ethyl cyclopentanone-

2-carboxylate (40 g.) were added to a solution of potassium hydroxide (15 g.) in water (100 c.c.). The ester quickly dissolved and the mixture was left for 2 days. The solid material was then collected and dissolved in sodium hydroxide solution, and the solution treated with charcoal. After filtration the solution was acidified with acetic acid and the precipitate filtered off, washed with water, and dried. Crystallisation from β -ethoxyethanol gave 4-hydroxy-2-methylthio-5:6-cyclopentenopyrimidine (3.5 g.) as colourless prisms, m. p. 270–272° (Found : C, 52.6; H, 5.2; N, 15.3. C₈H₁₀ON₂S requires C, 52.8; H, 5.5; N, 15.4%).

2-p-Chloroanilino-4-hydroxy-5: 6-cyclopentenopyrimidine.—4-Hydroxy-2-methylthio-5: 6-cyclopentenopyrimidine (6 g.) and p-chloroaniline (11 g.) were intimately mixed and heated at 130–140° for 24 hours. The product was powdered, boiled with alcohol (100 c.c.) for 3 hours, and filtered. The insoluble material was crystallised from β -thoxyethanol-The product was powdered,

water giving the hydroxypyrimidine as colourless needles. Ine insoluble material was crystallised from β-ethoxyethanol-water giving the hydroxypyrimidine as colourless needles. Ine insoluble material was crystallised from β-ethoxyethanol-water giving the hydroxypyrimidine as colourless needles. In 244-246° with previous darkening (yield, 6·35 g.) (Found : C, 60·1; H, 4·7; N, 15·7. C₁₃H₁₂ON₃Cl requires C, 59·7; H, 4·6; N, 16·1%).
4-Chloro-2-p-chloroanilino-5: 6-cyclopentenopyrimidine, prepared from the above hydroxy compound (5·8 g.) and phosphoryl chloride (18 c.c.), crystallised from alcohol as colourless laminæ, m. p. 151-152° (yield, 3·95 g.) (Found : N, 14·7; Cl, 25·2. C₁₃H₁₁N₃Cl₂ requires N, 15·0; Cl, 25·4%).
2-p-Chloroanilino-4-hydroxy-5-methylpyrimidine (VI; R = Cl, R' = H, R'' = Me).-4-Hydroxy-2-methylthio-5-

Π
BLE
L I

2-p-Chloroanilino-4-dialkylaminoalkylaminopyrimidines. Variation of the Substitutents in the 5- and the 6-Position.

((i.	16.9	16-05	15.15	16.2	11	16.7		0.01 	10.10	15.2	15-9	[4]	14.0	- 1	9.81	13.0		14-1 	$\frac{14.0}{-}$ 16.4	17-5	15.2	141	
Analysis. Found, % Required, %	21-9	16.7	19.5 15.8	14.9	16.0	19-4 15-5	21.0 16.5	19.4	21-0 21-0	18.6	15.0	10.0	13.9	13.8 16.0 13.7	1.7.1	0.41	12.8	18.7	18.1	$14.4 \\ 19.5 \\ 16.2 \\ 16.2 \\ 16.2 \\ 10.2 \\ $	20-3 21-0 17-2	17.7 14-9	17.1	17.0
	H.	6.4 6	3.8 6.8	0.9	7.5 6.8	1.7	7.2		000			6.9		0.0 0.1 0.1	6.8 8.1	# ,	1.5 2.9	0.0 1.1 0		0.5 F	6-9 7-2 6-4	6.6 6.0		6.3
	0.1 0.1	45.8	44-0 46-1	56.3	62.2 49.3	63-1 50-4	61.2	63.1	61.2 61.2	43-1 63-9	51.4 62.2	48.3	52.4 68.0	58.6 58.8 58.8	67-4 55-1	1.00	50.6 50.6	64-3 64-3	65.0 65.0	63.4 52.7	62.5 61.2 50.2	66.8 56.35	67.4	64.5
	l Č	17-2	16.7	15.2	$\frac{-}{16.0}$	11	16.0				14·7	1.91	14:3 2 14:3	14-0 1 13-7	1	0. H T	13.2	1 <u>1</u>	14-0 	14.7 - 16.4	17.0	15.2	2 <u>4</u>	1
	22.0	16-1	18.8 15.8	15.2	16.0	19-3 15-1	20.6 16.9	19.2	20.4	18:3	19.7	0.01	14·0 16·4	14-0 16-6 13-4	17.0	T. F. T	13.5	18.3	14.8	19.5	20.8 21.0 17.2	17·3 14·8	16-9	0.21
) H %	7.4	3.8 6.7	5.6	7.6 6.8	8·1 7·0	7-0 6-7			0.0		1.9	1.7 6.9	6.19 6.19	6-7		- 6 - 6 - 9	0.0 0 0	8-0 1-1	6.3 6.3	7.4 7.4 6.5	6-4 6-0	0.0 0.0	0-7 0-7
	(၂၃ <u>၀</u>	45.6	44·1 46·1	56-0	62·0 49·1	63·7 49·8	6.09				51.3 62.6		52·8 67·8	1 68.7 58.6	67.4 55.9	7.00	59-5 50-1	42.8 64.3	49-4 65-1 71-9	63-6 53-3	$62.8 \\ 61.4 \\ 50.0$	67-1 56-6	67-0	64.2
	Formula. C.,H.,N,Cl	C1.H22N CI, 2HCI, 1.5H2O	C ₁ ,H ₃ ,N ₆ Cl,2C ₆ H ₅ O,N ₃ C ₁ ,H ₃ ,N ₆ Cl,2HCl,2H ₂ O	C ₃₃ H ₃₆ N ₆ Cl,2HCl	C1.H2.N.CI C1.H2.N.CI,2HCI,H2O	C1,H2,N,CI C1,H2,N,CI,2HCI,H2O	C ₁ ,H _s ,N _s Cl	C ₁₀ H ₂₈ N ₅ Cl C ₁₀ H ₂₈ N ₅ Cl	C1,H ₁ ,N ₅ Cl znCl,0 ¹⁰ ,II ₂ O C1,H ₁ ,N ₅ Cl	C ₁ ,H ₂₄ N ₅ Cl,ZHCl,H ₂ O C ₂₀ H ₃₀ N ₅ Cl	C ₂₀ H ₃₀ N ₅ Cl,2HCl,H ₂ O C ₁₈ H ₃₀ N ₅ Cl	C18H26N5CI,2HCI,1.5H2O	C ₃₁ H ₃ ,N ₅ Cl,2HCl,1·5H ₂ O C ₃₄ H ₃₆ N ₅ Cl	C11H12N 6CI, ZHCI, 0-5H2 C11H12N 6CI C15H12N 6CI, 2HCI	C.,H,N,Cl		C ₂₇ H ₃₆ N ₅ Cl,2HCl,0·5H ₂ O C ₁₈ H ₃₅ N ₅ ClBr	C ₂₀ H ₂₆ N ₅ ClBf,ZHCl,0·0H ₂ C C ₂₀ H ₂₆ N ₅ Cl	C ₁₀ H ₂ N ₅ U ₅ U ₅ HCI,2H ₂ U C ₁₁ H ₃₀ N ₅ Cl C ₁₁ H ₃₀ N ₅ Cl	C1,H1,N,CI,ZHCI,I.9H2O C1,H2,N,CI C1,H2,N,CI,2HCI	C1,8H3,N5Cl C1,H3,N5Cl C1,H3,N5Cl,2HCl	C"H"N"CI CHN.CI 2HCI	C ₂₃ H ₂₈ N ₅ Cl C ₂₃ H ₂₈ N ₅ Cl	C22H2 0N5Cl
	$ \begin{array}{c} M. p. \\ 71-72^\circ\\ 237-238\\ 011\\ 228-220\\ 028-210\\ 028-210\\ 028-210\\ 028-210\\ 028-210\\ 028-210\\ 01222\\ 028-210\\ 012222\\ 012222\\ 011\\ 028-216\\ 012222\\ 011\\ 028-216\\ 012222\\ 011\\ 028-216\\ 012222\\ 011\\ 028-216\\ 0122222\\ 0122222\\ 012222\\ 0122222\\ 0122222\\ 012222\\ 012222\\ 012222\\ 0122$																							
	Derivative.	Dihydrochloride 	Dipicrate Dihydrochloride	Dihydrochloride	Dihydrochloride	 Dihydrochloride	 Dihudrochlorido	Dired-choild		Dinydrocnionde	Dihydrochloride	Dinydrochloride	Dihydrochloride	Dihydrochloride Dihydrochloride			Dihydrochloride	Dinyarochioride	Dinyarocnioride	Dihydrochloride	 Dihydrochloride		Dihvdrochloride	
Substituent at	4. NH·fCH.l.·NEt.	NH-ICH. L. NEt.		1941. ² [210]. HN	NH (CH_] ·NEt2	NH [CH2]3.NEt2	NH·[CH2]3·NMe2	NH ·[CH2] ·NEt2	NH·[CH2], NMe2	NH·[CH2]3·NEt2	NH·[CH2]3•NMe2	NH·CHMe·[CH ₂] ₃ ·NEt ₂	NH·[CH2]a·NEt2	NH·[CH2]3·NEt2	NH·[CH _{\$}] ₃ ·NMe ₂	NH·CHMe·[CH ₂] ₃ ·NEt ₃	NH·[CH,],·NEt	NH·[CH2]2·NEt2	NH·[CH2]3·NEt2	NH [CH 2] 3 NMe2	NH [CH2]2 NHe2 NH [CH2]2 NH2	NH·[CH2]2·NEt2	NH·[CH2]3·NEt2	NH·[CH,]2·NEt2
	о н	: H		ал 1	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	Me	O.	Q	0	н	Н	Н	Н
	Н.	H		ц	Me	Me	Me	Et	Et	Et	Et	Et	CH₁.Ph	CH₁.Ph	CH₂•Ph	$CH_{a}\cdot Ph$	Br	5:6.cycloHexeno	5:6-cycloHexeno	: 6-cycloHexeno	5 : 6 <i>·cyclo</i> Penteno Me	\mathbf{Ph}	Ph	OPh

methylpyrimidine (Wheeler and Merriam, loc. cit.) (20.8 g.) and p-chloroaniline (34 g.) were boiled in β -ethoxyethanol methylpyrimidine (Wheeler and Mernam, *loc. cit.*) (20.8 g.) and p-chloroanline (34 g.) were bolied in p-ethoxyethanol (50 c.c.) for 48 hours and the mixture worked up as described above for 2-p-chloroanlino-4-hydroxypyrimidine. The *compound* crystallised from acetic acid as colourless thin plates, m. p. 266-267° (yield, 26 g.) (Found : C, 55.6; H, 4.5; N, 17.7. $C_{11}H_{10}ON_3Cl$ requires C, 56.05; H, 4.2; N, 17.8%). 4-Chloro-2-p-chloroanilino-5-methylpyrimidine (VII; R = Cl, R' = H, R'' = Me), prepared by refluxing 2-p-chloro-anilino-4-hydroxy-5-methylpyrimidine (21 g.) and phosphoryl chloride (63 c.c.) for $\frac{1}{2}$ hour and working up in the usual way, crystallised from β -ethoxyethanol as colourless prisms, m. p. 158-159° (yield, 13.9 g.) (Found : N, 16.0; Cl, 28.0%)

way, crystainsed from b-etholyethalof as columness prisms, in: p. 136-135 (yield, 13.9 g.) (Found : N, 16.6; Cl, 28.0%). 2-p-Chloroanilino-4-hydroxy-5-phenylpyrimidine (VI; R = Cl, R' = H, R'' = Ph).-4-Hydroxy-2-ethylthio-5-phenylpyrimidine (Wheeler and Bristol, Amer. Chem. J., 1905, **33**, 460) (19.44 g.) and p-chloroaniline (29.9 g.) were heated at 130-140° for **6** hours, with stirring until the melt solidified. When cold, it was ground, refluxed with alcohol (150 c.c.) for 14 hours, and filtered off. The compound was practically insoluble in all the usual organic solvents and was purified by dissolution in sodium hydroxide solution and reprecipitation with acetic acid followed by boiling with β -ethoxyethanol. It then had m. p. 328-330° (Found : C, 64.0; H, 4.1; N, 14.6. $C_{16}H_{19}ON_3Cl$ requires C, **64**.5; H, 4.0; N 14.16V)

4.0; N, 14.1%). 4-Chloro-2-p-chloroanilino-5-phenylpyrimidine (VII; R = Cl, R' = H, R'' = Ph), prepared by the action of phos-4-Chloro-2-p-chloroanilino-5-phenylpyrimidine (VII; R = Cl, R' = H, R'' = Ph), prepared by the action of phos-the second seco phoryl chloride (60 c.c.) on the preceding hydroxy compound (20 g.) for 1 hour followed by working up in the usual way, crystallised from alcohol as colourless elongated prisms, m. p. 133–134° (yield, 15·35 g.) (Found : N, 13·1; Cl, 22·1. $C_{16}H_{11}N_{3}Cl_{2}$ requires N, 13.3; Cl, 22.5%).

2-p-Anisidino-4-hydroxy-5-phenylpyrimidine (VI; R = OMe, R' = H, R'' = Ph).—4-Hydroxy-2-ethylthio-5-phenylpyrimidine (17·4 g.) and p-anisidine (18·45 g.) were boiled in β -ethoxyethanol (50 c.c.) for 21 hours. After cooling, the crystalline product was filtered off, washed well with hot alcohol, and dried (yield, 19·1 g.). It separated from acetic acid as colourless laminæ, m. p. 271—272° (Found : C, 69·3; H, 5·0; N, 14·5. $C_{17}H_{15}O_2N_3$ requires C, 69·6; H, 5·1; N, 14·3%).

N, 14.3%). 4-Chloro-2-p-anisidino-5-phenylpyrimidine (VII; R = OMe, R' = H, R" = Ph), from 2-p-anisidino-4-hydroxy-5-phenylpyrimidine (17.15 g.) with phosphoryl chloride (45 c.c.), crystallised from alcohol as colourless needles, m. p. 152° (yield, 11.65 g.) (Found : N, 13.4; Cl, 11.4. C₁₇H₁₄ON₃Cl requires N, 13.5; Cl, 11.4%). 2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VI; R = Cl, R' = H, R" = OPh).—4-Hydroxy-2-ethylthio-5-phenoxypyrimidine (Johnson and Heyl, Amer. Chem. J., 1907, 37, 628) (11.6 g.) and p-chloroaniline (16 g.) were heated at 130-140° for 28 hours. The residue (solid when cold) was worked up as before giving the hydroxypyrimidine which, 13.1. C₁₆H₁₂O₂N₃Cl requires C, 61.2; H, 3.8; N, 13.4%).
4-Chloro-2-p-chloroanilino-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (VII; R = Cl, R' = H, R" = OPh).—2-p-Chloroanilino-4-hydroxy-5-phenoxypyrimidine (945 g.) and phosphoryl chloride (30 c.c.) were refluxed for 30 minutes. The resulting clear solution was poured on ice and the mixture made alkaline with ammonia. After stirring for 24 hours the supernatant

b-phenoxypyrimidine (9.45 g.) and phosphoryl chloride (30 c.c.) were refluxed for 30 minutes. The resulting clear solution was poured on ice and the mixture made alkaline with ammonia. After stirring for 21 hours the supernatant liquid was decanted. The oily residue was dissolved in alcohol, the solution made alkaline with ammonia and poured into water, and the precipitate collected. The compound crystallised from aqueous alcohol as colourless prisms, m. p. 112—113° (yield, 5.3 g.) (Found : C, 58·1; H, 3·7; N, 12·6. $C_{16}H_{11}ON_3Cl_3$ requires C, 57·8; H, 3·3; N, 12·65%). 4-Dialkylaminoalkylaminopyrimidines.—The chloropyrimidine and the dialkylaminoalkylamine (1·25 mols.) were heated at 125—135° for 8 hours with stirring. The resulting melt was dissolved in hot dilute hydrochloric acid and the solution made alkaline with sodium hydroxide. The base was then extracted with ether or chloroform and the extract

shaken several times with 5% acetic acid. Alternatively, the solvent was removed by distillation and the residue extracted with 5% acetic acid. The base was liberated from the combined acetic acid extracts by the addition of sodium hydroxide and again taken into ether or chloroform. Evaporation of the dried solution left the base as a solid, or as an oil which usually crystallised when triturated with light petroleum (b. p. $40-60^{\circ}$). The substances which could not be obtained crystalline in this way, notably those containing the δ -diethylamino-*a*-methylbutyl side chain, were converted into their dihydrochlorides. The solid bases were purified by crystallisation from light petroleum. For biological testing the dihydrochlorides were usually prepared by dissolving the bases in hot 2N-hydrochloric acid and allowing the solution on cooling the solution was evaporated to dryness under reduced pressure at 50-60° and the evaporation repeated with alcohol or alcohol-benzene to remove water and adhering hydrochloric acid; it was then purified by crystallisation from alcohol, alcohol-ethyl acetate, or alcohol-acetone.

In addition to the substances contained in Table II the following were prepared by the same general method

2-p-Toluidino-4- β -diethylaminoethylaminopyrimidine, prepared from 4-chloro-2-p-toluidinopyrimidine (Johnson and Storey, *Amer. Chem. J.*, 1908, **40**, 143) and β -diethylaminoethylamine, gave a *dihydrochloride* which crystallised from alcohol-acetone as colourless prisms, m. p. 220–221° (Found : C, 52·1; H, 7·3; N, 17·5; Cl', 18·3. C₁-H₂₈N₅, 2HCl, H₂O requires C, 52·3; H, 7·4; N, 17·9; Cl', 18·2%).

 $\begin{array}{l} & \begin{array}{c} 2-p-Anisidino-4-\beta-diethylaminoethylamino-5-phenylpyrimidine, crystallised from light petroleum (b. p. 100-120°) \\ & \begin{array}{c} 2-p-Anisidino-4-\beta-diethylaminoethylamino-5-phenylpyrimidine, crystallised from light petroleum (b. p. 100-120°) \\ & \begin{array}{c} nclusters of colourless prisms, m. p. 158-159° (Found : C, 70.2; H, 7.4; N, 18.0. C_{33}H_{39}ON_5 requires C, 70.6; H, 7.4; N, 17.9\%). \\ & \begin{array}{c} Trought requires constraints (row of the second s$

IMPERIAL CHEMICAL INDUSTRIES, LIMITED, RESEARCH LABORATORIES, BLACKLEY, MANCHESTER, 9.

384

[Received, October 17th, 1945.]